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ABSTRACT

A general mathematical model is fojrmulated for the problem of scheduling

production quantities for a group of products with seasonal stochastic demand

through a common production facility. It is assumed that revised forecasts

of total demand over the season for each product become available as the

season progresses; delivery is not required until the end of the selling

season. Limited production capacity requires that some production take place

early in the season, when forecasts are less accurate. At the end of the

season, there are overage costs and underage costs representing costs of

producing excess quantities and opportunity costs of not producing enough

units. Under certain assumptions concerning the data-generating process

for forecast revisions, it is possible to formulate the entire problem as

a dynamic programming problem; however, the formulation is not computationally

feasible if two or more products are considered. Three heuristic approaches

to the multiproduct problem are presented and their cost performance is

evaluated in some numerical examples. In these particular examples, more

frequent reforecasting and rescheduling produces substantial reduction in

costs.

537'?n4.





I. INTRODUCTION

Consider a production scheduling problem in which M products are pro-

duced on a single common production facility and orders are obtained over

a relatively short selling season. Delivery is not required until the end

of the selling season, linear production costs are present, and production

capacity is limited. Let the total time period up to the delivery date be

divided up into a number of production periods, and assume that a revised

forecast of total demand for each product is available at the beginning of

each period. Under these circumstances, how should production be scheduled

each period so as to minimize total costs, including costs of overage and

underage at the end of the season? In this paper we develop a dynamic

programming formulation for this general problem, point out its practical

limitations and consider some alternative heuristic approaches.

This general problem was abstracted from an actual production sheduling

problem faced by a garment manufacturing firm producing style goods.

Similarly, wholesalers' orders for the December (Christmas) selling season

may create a similar type of production scheduling problem for a wide

variety of products.

A number of authors have explored the problem of allocating limited

capacity in a nonseasonal situation (see [2], [5] and [16]), making use of

(respectively) the Lagrange multiplier technique, quadratic programming,

or adjustment of reorder points. In the seasonal setting, Spurrell [14]

presents a plan for capacity allocation which is a special case of the multi-

product classical newsboy problem with a Lagrange multiplier used to allocate

limited capacity. However, Spurrell 's approach makes no provision for fore-

cast revisions. Chang and Fyffe [3] present a method to generate forecast
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revisions as demands occur; their method continues to place some weight on

the initial forecast, thus giving it a Bayesian characteristic. They do

not concern themselves with the associated production scheduling decision

problems, however. Hertz and Shaffir [8] present a forecasting procedure

involving a simple extrapolation of cumulative wholesale demands through

the season. For production allocation purposes they recommend a continuing

newsboy approach using the most recent forecasts and associated forecast

errors; they do not consider limited capacity.

Liff [11] and Wolfe [17] have found that retail sales of style goods

tend to be proportional to inventory displayed, thereby creating an expo-

nential distribution (assuming no reorders) of sales through the season.

Their work seems useful in making forecast revisions for sales at the re-

tail level, as compared to simple extrapolation using the Normal-shaped

cumulative sales curve for wholesale demands (see [8] and [10]).

None of the work cited so far has contained both an explicit proba-

bilistic model for forecast revisions and an optimal decision framework

for such a model. Wadsworth [15] presents a 2-period example for a production

scheduling problem for one product with limited capacity and with a revised

(perfect) forecast available in the second period. Murray and Silver [12]

present a Bayesian model for forecast revision (based on recent sales) im-

bedded in a sequential decision framework for which dynamic programming

provides an optimal solution. Their work involves only one product, and the

present study may be viewed as an extension of their work to the multiproduct

case where the question of limited production capacity has greater complexity.

Also, as will be seen subsequently, the forecasting mechanism allowed in the
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present study may be a human one which is Bayesian in a broad sense.

Finally, Evans [4] has considered a problem similar to the one considered

here except that in his model, demands for each product in a particular

period are given by a random vector which is independent from one period to

the next. Thus in his case, there is no forecast revision process involved.

Another difference is that delivery is period by period rather than terminal.

Evans demonstrates that under his cost assumptions, there exists a single

(multidimensional) critical point S such that if initial inventory and pro-

duction capacity allow, the optimal policy is to "order-up-to" S (in a

multidimensional sense). If capacity restrictions are active, then the

optimal policy is "order-up-to Z (X)" where X is a vector representing ini-

tial inventory and Z (X) is a vector representing an optimal "order-up-to"

multidimensional point given the production restriction. If any product

were in excess supply it would not be produced. Evans concludes that

"... The Z function does not appear to have any particularly simple form."

The problem under consideration here appears to be even more complex

than Evans' since we allow for a stochastic forecast revision process, there-

by nullifying the period-to-period independence of the random demand vari-

able. Thus it is not surprising that an optimization approach to the pro-

blem becomes intractable for more than one product, and heuristic approaches

must be used.

II. A MODEL OF THE FORECAST DATA-GENERATING PROCESS

2
It has been shown elsewhere that under certain circumstances, systems

See reference [4], p. 183,

2
See reference [7]
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for generating and revising forecasts of some unknown quantity may have the

Markovian property of no memory. Specifically, in a number of cases it was

found that ratios of successive forecasts could, as a first approximation,

be treated as independent random variables distributed according to the Log-

normal distribution. It should be noted that, for our purposes, the precise

functional form of the probability density function relating successive fore-

casts is unimportant, as long as some approximate probability density func-

tion can be obtained. However, the assumption of independence is crucial

to our dynamic programming formulation, since the current forecast is a

sufficient statistic only if independence exists.

Based on the results reported in [7], it is assumed subsequently that a

significant class of forecasting mechanisms exhibits the Markovian property.

Specifically, in the remainder of this paper it is assumed that ratios of

successive forecasts of total orders for a seasonal product are mutually

independent Lognormal variates whose parameters may be estimated by ana-

lysis of historical forecast data. Let X. represent the forecast of total

seasonal demand for a product, with the forecast made at the beginning of

period j; then ratios of successive forecasts are (X.,,/X.). Also let
J+1 3

Xj^_^ represent actual total demand for the product. Define

(1) Z = (X /X.), j = 1,..., N (time periods)

Then it is assumed that the variable Z. has the following distribution:
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^j'^^LN^^jl^j'^j)^ ^=^- e-^^°^ ^J
-
^J^'/2^?'

J = l.---N.

-vf2ia.Z.

with Z. independent of Z for j ^ k.

III. DYNAMIC PROGRAMMING FORMULATION OF SINGLE -PRODUCT CASE

The general production scheduling problem described above is first for-

mulated for the case of a single product. While this case is much less

interesting than the multiproduct case, it still presents a non-trivial

problem.

The state variable at the beginning of any period j is defined as a

2-dimensional vector with its first element being the current (revised) fore-

cast X. of total demand and its second element being the current amount
J

of inventory (call it Y.) of the product produced in previous periods 1, 2,

...,j-l. That is, Y. represents the initial inventory at the beginning of

period j . Decisions concerning the amount of product to produce in the j

period (for j = 1 to N only) are made at the beginning of the jth period

and they are framed in terms of an "order-up-to" amount Y of desired

ending inventory (recall that no shipments will occur until the end of the

season, in period N + 1) . The amount to be produced in period j is

(Y._|_^ - Y.) for j = 1,...,N. Also let:

C = unit cost of overage in period N + 1 (i.e., the cost of having

one unit of excess ending inventory after actual demand is known

in period N + 1)

C = unit cost of underage in period N + 1 (i.e., the cost of a short-

age of one unit after actual demand is known)
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3K = available production capacity in each production period (j = 1,...N)

Note that there are no setup costs, holding costs, or additional costs of

production In this formulation; all costs are Incurred In period N + 1,

after production has ceased. (The terms C and C can, however, Include a"^

o u

linear production cost.) Without loss of generality, a "unit" of product

Is defined to be the amount of product which can be produced with one unit

of production capacity, with overage and underage costs, inventories and fore-

casts appropriately rescaled.

Now define the usual return function in dynamic programming as follows:

g.(X.,Y.) = minimum expected cost Incurred from the beginning of period

j through period N + 1, given that the current state vector

is (X.,Y.) and that optimal decisions are made from period

j through period N.

Then the following relationship holds in period N + 1:

^O^^N+l - Vl^ ^' \+l ' ^4-1

^u^\+l " \+l^ " Vl - Vl
^2) Sn+I^^+I' \+1^

This equation indicates that the costs in period N + 1 are simply the costs

of overage or underage, whichever has occurred. (Recall that the actual

demand has been written as a final "perfect" forecast ^. -i > consistent with

reference [7] .)

Working backward, consider the situation at the beginning of period N:

3
Any of the subsequent models could trivially be adapted to a different

production capacity K. for each period j; also, production periods need not

be of equal length.
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oo

Equation (3) indicates that the optimal (minimum) expected cost from period

N to the end of the process is obtained by minimizing the expected cost which

will be incurred in period N + 1. The expression in curly brackets is the

expectation of g ^ (X^ • \>"^v[.-|) with respect to the random variable Z ;

and the arguments of the function g^,-, are the revised forecast next period,

X^ ~ ^ '
^M' ^^^ ^^^ revised amount of inventory available at the

4
beginning of the next period, Y . The minimization is performed in general by a.

lowing the decision variable Y
-^ (the number of units "ordered-up-to" in period N)

to vary over the allowable range from Y (zero production) to Y + K (100%

use of capacity in period N) , and selecting the value of Y ^ which results

in a global minimization. Denote the optimal order-up-to value by

Y* (X^, Y ) since the optimal decision will in general be a function of

the current state vector. Then this value may be substituted into equation

(3) to obtain a value for the return function g (X^, Y ). The minimization

process must be performed for every allowable state vector to generate a

complete decision table Y* (X^, Y ) over all possible states.

Once the above operation has been completed for period N, we again work

backward and repeat the process for period N-1, N-2, et cetera. The general

recurrence relation for period j would be written as

:

oo

(4) g.(x.,Y.) = Min { f g.^Ax. ' z.,Y.,.)- f^. rz.
| y . ,a .)dz .}JJJ Y<Y <Y+K / ^^ J J J+1 LN J ' J J J

4
As will be indicated, the minimization of 3 may be performed analytically for

stage N; however, for earlier periods it must be obtained by a search procedure,
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Eventually, after working back to period 1, the return function g^ (X ,Y = 0)

would represent the minimum expected cost of initiating the process with

zero inventory and an initial forecast of X^ units. The optimal production

decisions would be found at the beginning of each period by substituting

the current forecast X. and the current inventory Y. into the appropriate

optimal decision table Y*
.

, . (X. , Y .)

.

J+1 3 J

Dynamic Programming Solution to Single-Product Case

Now the dynamic programming formulation above will be used to demon-

strate that no general analytical solution exists even for the single-product

case. Substituting equation (2) into equation (3), we obtain:

(5) Vl^^

N - N+1 - N

N

+ C
u

''N+1

OO

%-^rh+i^'m^hK' %^^h^'
Y„.:/x^

If Z-j is distributed Lognormally with parameters y and a , it can be

shown that X^,-, = X^ ' Z is distributed Lognormally with parameters

(y^ + log X^) and a . Then (5) can be rewritten as

V definition, log^X^ '^ ^Cu^.a^^). Now log^X^^^ = ^°^e^^
'

^N^
=
^°^eh'^^°^eh'

with log X^ being a known constant at period N. Thus log X^^ '^ N(y +log X^,a )

so that X^^^ '^^ LN(yj^ + log^X^^, o^) .
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^'^ Vi
{^o /^%(^'^N^ = ^^" ^^o ^Q%+rVl^^LN^VllVl°ge\' S)^^+l

\ <- Vi -^ ^

00

+ c J

Apart from the inequality restrictions on Y i, the terms in brackets {} re-

present the usual overage and underage costs in a standard "newsboy" or

"Christmas-tree" problem, in which the first-order condition for a minimum

is as follows:

C

(7> ^LN <^Vll^N + 1°S, X^. O^) = ^-^u+
o u

Equation (7) indicates that the optimal amount of inventory Y* to "order

up to", in the absence of any constraint, would be the value which satisfies

the relationship indicated. Now the cumulative Lognormal distribution

F ^(.)> just as the cumulative Normal distribution, cannot be expressed in

closed form, and table look-up must be used to find the value of Y -. which

satisfies equation (7). Once that value is obtained, the constraint on the

size of Y., ,, can be taken into consideration as follows. Let the value of
N+1

Y„,, satisfying (7) be denoted by Y'.,,,. Then since equation (6) is convex
N+1 JO J

ii+±

in Y., ,, for C > and C > 0, the optimal value of Y^,,^ under the existing
N+1 o u N+1 °

constraint is given as follows

:
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Y if Y' Y
N N+1 - N

Since the cumulative of the Lognormal (or Normal) distribution cannot

be expressed in closed form, it is not possible to find the optimal decision

Y*
^

(X^,Y ) as a closed-form function of the state vector, and thus it is

not possible to substitute into equation (6) the optimal decision function

Y* ,, in order to obtain a closed-form solution for the return function
N+1

g (X^,Y ). It is, however, possible to approximate the solution to (6) by

creating a grid of possible (discrete) values for the two-dimensional state

vector (X^,Y ) and similarly approximating the continuous probability density

function of the random variable X^.-, by a probability mass function defined

over a set of discrete values. Then for stage N, equations (7) and (8) pro-

vide a solution which performs the required minimization in (6) (earlier

stages cannot be minimized in this manner; a grid search over allowable

decision values must be used for the general Y .
,

^ term) . The optimal decision

Y* ^ (X^, Y ) would be a function of the state vector, and would be tabulated

and stored in the computer. Then the optimal decision would be substituted

into equation (6) to obtain a complete table for the return function

g (X^, Y ). Finally, the above process of minimization, recording, and

substitution would be repeated for periods N-1, N-2,...,l to obtain the

entire optimal policy (in tabular form)

.
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IV. DYNAMIC PROGRAMMING FORMULATION OF MULTIPRODUCT CASE

The preceding dynamic programming formulation may easily be generalized

(at least in theory) to encompass M products. Define the following column

vectors:

Xj ^ (^1 i >^o -i
» • • • '\( A^' * vector of current (revised) fore-^ ' l.j' 2,j

casts at the beginning of period j

,

with

i = 1 , . . . , M products and

j = 1,..., N + 1 periods

(the prime denotes a transpose)

Y. = (Y, . ,Y„ .,...,Y„ .)', a vector of current inventories at
-3 1,J 2, J M,j

the beginning of period j

Z. = (Z- . ,Z ,Z )', a random vector of ratios of
J 1 »J ^ » J M,j

successive forecasts: Z. .=X, . , , /X . .

i,j i,j+l i,j

for all 1.

Y
.

, -,
= (Y, .,T,Y„ .,,,.. ,Y„ .,,)', a vector of desired ending inven-—]+l l.j+1 2,j+l M,j+1

tories after period j (the decision

vector)

.

Also let

C = unit overage cost for product i;C =(C ,...,C )'
O. -GO, o„
1 1 M .

C = unit underage cost for product i;C=(C ,...., C )'
u. ' -u u^^ u^

K = available production capacity in each period.
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Under the assumptions discussed above for forecast revisions, the

M X 1 random vector ^ is a multivariate Lognormal variate with Z inde-

pendent of Z, if j 5* k:

:(M)Ij-f^/ (^,\Ryl,^

with

£=
(y,^..y2,j.---.Vj>'

and

V =

r Z
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with ending condition

(10)

\+1^-'n+1'^+1^ " ^ "^o. ^^i,N+l " ^i,N+l^
1

^^ ^1,N+1 " ^i,N+l

'^^u^ ^^.N+l-^W

^^ ^i,N+l - ^i,N+l,

where V = (1, 1,...,1), a 1 x M row vector with all elements unity.

In theory, the set of equations (9) could be solved in the same manner

as equation (4), except for two problems. Ignoring the manner in which the

optimization of equation (9) subject to the inequality constraints would be

performed, there is a much more serious difficulty in this equation. The

dimensionality of the state space is 2M (two variables per product for M

products) , and numerical solutions to dynamic programming problems involving

a dimensionality of the state space greater than three quickly become compu-

tationally infeasible, assuming no special structure of the return function

exists. In our case the return function involves a multivariate integration,

which hardly qualifies as a simplifying special structure. Therefore the

See reference [6], p. 426.
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preceding dynamic programming formulation serves only as a vehicle for

problem description and is not useful as a framework for computational

solution.

It should be noted, however, that the optimal value for the last deci-

sion in the multiproduct case (the choice of the vector Y in equation

(9) for j = N) can be obtained through the use of Lagrange multipliers,

as this problem is simply the constrained multiproduct single period news-

boy problem. We will carry out this analysis here because all of our sub-

sequent heuristics are derived from it.

After substituting (10) into (9) for j = N, form the function^

(11) ri,N+lUJ-J ri,N+l

^^^'^'^+1^ =
.^^ ^o. J (\,N+r ^i.N+l^ V^^i,N4-l)^ ^i,N4.1

oo

•^ \ J ^^i,N+l - ^,N+l)V^\,N+l>'^ ^i,N+l + ^^\ (^,N+1 -
^i N^

- ^]
J-

Y 1 X=l '

i,N+l

where f
ljj

(X^
^ jj^^^

) Is the marginal probability density function of X Taking
i 1 » i^"t"l

partial derivatives of L with respect to each element of the decision vector and

with respect to X produces:

8l

for i = 1 M and

It can be shown that even if independence across products is not present,

equation (11) appropriately represents expected costs, since the cost

function across all M products is separable.
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3T ^
(13) Iy = ^ (Y- MJ.1 - Y- m) - K = 0-

9a . T i,N+l i.N
1=1

From (12) one can derive the following set of equations representing

the solution to a constrained multiproduct newsboy problem:

C - X

(1^> ^LN. (^i.N+l^
= c"%C .

i = l>.--.>^> -here F^^_(Y ^^^
=

o. u^

/

Y
i,N+l

LN . 1 , N+1 1 , N+1
1

where the parameters of F (•) are (y. + log X , a ) following foot-

note 5. Equation (14) must be solved (for each i) for various trial values

of A until the solutions {Y. „,,} satisfy (13). However, the behavior of
i,N+l

(13) is obviously monotonic in X; as X is increased, reflecting a higher

premium cost or shadow price on capacity in the last period, the "order-up-

to" quantities {Y. ^ ,

-,
} satisfying (14) will decrease, as will their sum.

Thus, the search procedure is not difficult, and the {Y ^} quantities so

obtained will be optimal decision values. If any of these optimal values

is less than current inventory then, based on the convexity cited earlier,

production for that product should be fixed at zero and the trial-and-error

process of varying X should be repeated. Also, if X is negative then it

should be set at zero, since in that case capacity is not a binding
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constraint. Unfortunately, it is not possible to solve previous -period

decisions optimally, for the reasons cited earlier.

V. THREE HEURISTIC APPROACHES TO THE MULTIPRODUCT CASE

Introduction

In the multiproduct case the optimal decision in the last period is given

by (14), that is, the constrained newsboy decision rule. Optimal decisions

for earlier periods are computationally infeasible, however. Three heuristics

are now considered, each of which is a variation on the basic constrained

newsboy theme. From this point of view, the heuristics extend previous work

done on related problems ([4], [8], [14], [15]).

Heuristic 1 (H-1)

The mathematical intractability can be overcome easily if one is willing

for the moment to ignore the future production opportunities (beyond the

current period) and the corresponding forecast revisions inherent in the

problem. Under such a myopic approach the decision-maker would make his

production decisions at each period, j, as if the current period were the

last available production period, using the constrained newsboy decision-

rule given previously in (14). This heuristic, then, allocates the next

K units of production capacity to their "best" use in the restricted sense

8
If appropriate, one could also formulate this multiproduct single-period

newsboy problem with more than one capacity constraint to reflect a more

complex production technology with multiple resource requirements and

constraints. See Hodges and Moore [9] for an example of such a formulation,

and Ziemba [18] for a careful discussion of numerical solution procedures.
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that if the plant (but not the inventory) were to bum to the ground after

the current period, expected profits would be the maximum over all other

allocations.

Specifically, heuristic H-1 proceeds as follows. Let the order quan-

tities at each period, j, be represented by the difference between an

optimal target order-up-to level Y*
^_^^

and the current cumulative inven-

tory level Y . The M order-up-to quantities {Y* ^,^1 are obtained by
-*- > J 1 , N+1 '

solving the following set of M+1 equations:

^''^ ^i.N-j+1 ^^Ln+I^ =
c"' I c' . '

i = 1.2....,

M

ui oi

<"> f^i=i ^^In-m - ^.j) - K
] = 0.

where F^^jj_j+;l ^'^ ^^ ^^^ cumulative distribution function^ of actual demand

for product i as forecasted in period j, X, „,,.-" i ,N+1

Heuristic 2 (H-2)

An alternative to H-1 would be a heuristic that attempts to obtain some

of the benefit of the optimal (but computationally infeasible) decision

policy by "looking ahead", even if in a relatively crude manner, to allow

9
Assuming Z^ are independent Lognormal variates across time periods, the

cumulative marginal distribution function F, „ ,., (•) for product i isi.N-j+1

cumulative Lognormal with parameters

N riT

k=j
^

T k=j
y - loge^j "**

, ^, \' "^ " V ^ ^k ^^^ reference [1] and footnotes 5 and 7.)
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for the future production opportunities and associated forecast revisions

which will actually occur as the season progresses. H-2 and H-3 represent

two ways in which this can be represented.

We define H-2 as follows. At each period, j, let the M target order-

up-to decision quantities {Y* } be given by solving the following set

of M + 1 equations:

' -^ — ui oi

M
(1«) t I..1 ai^^^ - Y.

^j)
- (N-j+l) K] = 0.

Using H-2 the decision-maker proceeds in the same way as under H-1,

except that the target order-up-to quantities Y* ^ are now determined on

the basis of the total available production capacity in the remaining

(N-j+1) periods (compare equations (18) and (16)). Of course, in any period j,

there is only enough capacity to produce K units. The M actual production

quantities (denoted by Q. .) for the current period are determined from

the M target order-up-to quantities Y* ^
by the following pro-rata scheme:

Note that by means of (17), (18) and (19) a crude characteristic of

"looking ahead" is introduced into the heuristic. By rationing capacity as

in (17) and (18), the decision-maker first determines the appropriate mix
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of products in his current production on the basis of the total remaining

production capacity of (N-j+l)K. He then proceeds as if he is going to

produce (N-j+1) of the total required production quantity of each pro-

duct, i, in each of the next (N-j+1) periods.

Heuristic 3 (H-3)

The third heuristic is identical to H-2 except in the method of pro-rata

rationing of available capacity. Instead of (19), the current production

quantities Q . are determined by:

(20) Q. .
.[^i!Ls±L_lZial^K

, i - 1,....M;

that is, the available capacity of the current period is fully allocated

among the M products in proportion to currently perceived need among them.

The only time that H-3 will not fully allocate the current production capa-

city is when the sum of the production requirement quantities Q. . Implied

by (17) and (18) do not exceed K; then there is no need for any pro-rata

calculation such as in (20) . Thus the difference between H-2 and H-3 is

that in early periods, H-3 will tend to allocate all current capacity in

proportion to perceived needs, while H-2 will allocate a portion of current

capacity based on a comparison of total perceived needs against total re-

maining capacity (N-j + 1)K. In each of these two heuristics, however, the

percentage allocation of actual production among products will be the same
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in both cases, namely, that found by (17) and (18).

Note that when j = N in the last decision period, H-1, H-2 and H-3 all

reduce to the optinval constrained newsboy decision-rule given earlier in

(14) . The differences between the heuristics come from the manner in which

capacity before the final period is allocated on the basis of current fore-

casts.

Advantages and Disadvantages of The Heuristics

All three of the heuristics capture the essential "newsboy" flavor of

the problem for individual items, as they all react to individual C and
i

C values. All three take into account the variability of actual demand
u
1

X. >,.-, about the current forecast X, .; and all use the Lagrange multiplier
i,N+l i,j

to ration scarce production capacity.

The disadvantages are as follows: the decision rules of H-1, H-2 and

H-3 are optimal only when one of two unrealistic assumptions are made; either

we act as though the only remaining capacity is that available in the

current period (H-1), or we act as though no forecast revisions will be avail-

able between now and the end of the season (H-2 and H-3) . Neither of these

situations is true, thus making all three approaches heuristic rather than

optimal. None of the heuristics takes explicit account of the availability

of revised forecasts as time passes. None has the ability to take into

10
account any difl:erences in the pattern of uncertainty resolution over time

among products. Also, in cases where total capacity is large relative to

E.g., delay production of type 1 product because the next revised forecast

may be vastly improved, while producing type 2 product because the next

revised forecast for it may not be very much "better" than the current one.
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initial forecasts, heuristic H-1 (and to a lesser extent, H-3) will create

an early build-up of inventory which may turn out to be excessive. Finally,

it is worth emphasizing that these three heuristics are relatively complex

and implementation would be non-trivial (a computer-based system would seem

essential).

VI. NUMERICAL RESULTS

The performance of the three heuristic approaches described above was

simulated over 100 trials of an N-period sequential production scheduling

problem with three products (M=3) . The results of the simulations are

presented in terms of the mean and standard deviation of overage and under-

age costs for 100 trials. Unfortunately, it is not possible to provide a

"benchmark" in the form of the (minimum) cost of an optimal sequential

allocation rule, since it was demonstrated above that such a rule is

computationally infeasible for two or more products, Estimates of current

management performance on our numerical example have not been sought because

it was felt that actual managers facing related problems typically encounter

many more than three products. Moreover, their particular internalized

heuristics may react partly to elements of their actual problems which are

absent from our numerical example (e.g., setup costs and times, inter-

mediate delivery requirements, nonlinear cost structure, etc.). A definite

lower bound on expected underage and overage costs is zero, but with any

forecast error at all, this would seem not to be a very tight lower bound.

Nevertheless, the relative performance of the three heuristics can be

assessed against zero costs to gain an idea of the amount of improvement
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one of them provides relative to the others. In general, though, this re-

search must be viewed as exploratory, and the three heuristics tested can

be compared rigorously only against one another.

There were 27 simulation runs, consisting of the three heuristics

compared under three cost cases with N, the number of production periods,

set at three levels: N=6 , N=3, and N=l. That is, there were Initially

six production periods, each with capacity K = 50; subsequently they were

grouped into three equal periods (N=3) with K = 100 (thereby using only

forecasts 1, 3 and 5), and then into one production period with K = 300

for the entire season. For this last version the three heuristic policies

are identical and "optimal" for the one-period problem presented.

The initial forecasts for the three products were X = (33,67,100)'.

The forecast revision process was assumed to be as stated earlier [see

equation (1)], with ratios of successive forecasts being mutually independent

Lognormal variates. For our numerical example we also assumed independence

among the forecast revisions for the three products at a given period; i.e.,

it was assumed that Z^ ., Z . and Z . [see above equation (9)] were Independent

See footnote 9 for the derivation of appropriate (.\i,o) parameters for

these N = 3, N = 1 cases.

12
While this assumption could be criticized in some practical situations,

we feared that any alternative assumption could seriously bias our

numerical results.
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13
We also set parameters y . .

= 0, and set a., as follows (initially, the
1 > J '-J

same for all i) :

Period j

:
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random trial, illustrating how the three heuristics actually behaved in a

particular situation.

VII. SOME CONCLUSIONS

From Table 1, Heuristic H-2 always produces the lowest average cost,

as compared to the other heuristics; however, heuristic H-3 generally pro-

duces cost outcomes with the least amount of variability (also see Table 2).

Most of these differences are not statistically significant, however. Mean

cost for heuristic H-1 significantly exceeds that of the other heuristics

for the N=6 situation; apparently the very large values for X in early

periods create an inventory imbalance which is not flexible enough to cope

with subsequent forecast changes. Conversely, H-2 and H-3 contain simple

pro-rata rules which tend to avoid extreme imbalance in the inventory mix.

H-3 probably suffers from its tendency toward excessive "early" production

as compared to H-2. On the other hand, the very large cost outcomes of

H-2 (contributing to its larger variance relative to H-3) result from

situations in which forecasts are revised upward in periods 3 and 4, when

remaining capacity will not suffice to meet enlarged demand. A risk-

averting decision-maker might decide to use heuristic H-3 (or some variant

of it) in order to avoid the few really disastrous outcomes possible under

H-2, while an expected-value minimizer would prefer H-2, based on our sample

resiilts. The existence of an inventory holding cost would also tend to

favor H-2.

It is interesting to study the effect of a larger number of (smaller)
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Table 1

Simulation Results (100 trials each) : Costs of Underage and Overage

Lowest value (of the three heuristics considered)
**Not run, would be identical to H-1 results.

fof actual cost for the 100 trials. The appropriate standard
derivation of mean cost would be a_ = cr Ivri = C /lO.

X
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production periods and associated reforecasting and rescheduling. As the

total season is divided from one entire production period, with no forecast

revisions available (N = 1), to the case N = 3 with two forecast revisions

and production rescheduling, the expected costs of H-2 and H-3 drop sharply,

a typical cost reduction being 60%. Subsequent cost improvement from N = 3

to N =» 6 provides less of a reduction in absolute terms; typically the re-

duction is about 60% of the cost of the N = 3 case. As more production sub-

periods are created and more forecast revisions are made, further improve-

14
ments in costs would occur, but no doubt with diminishing returns. These

results indicate the importance of making at least heuristic adjustments

based on revised forecasts, as opposed to freezing a production plan at the

outset; they also indicate that at some point, the additional effort expended

in providing more frequent forecast revisions (and associated production

decisions) may exceed the benefits obtained.

Finally, although all of the conclusions about magnitudes of effects

are based on the specific numerical examples described above, we conjecture

that the general characteristics of this type of production scheduling

problem have been captured by our numerical examples; thus the nature of the

results should hold under a variety of similar problem settings. Neverthe-

less, it is recommended that decision-makers facing this type of production

scheduling problem use the framework described herein to construct their own

Such returns are also dependent on the general "tightness" of the production

scheduling problem, as indicated by the ratio of the sum of all initial

forecasts EX . to total available capacity (NK)

.

i 1,-1-
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simulations with their particiilar costs, capacity limits, and other para-

meters. The results of such simulations will provide more precise guide-

lines in choosing among these three heuristics (or others) and deciding on the

most desirable value for N, the number of forecast revisions.

Further Research

We have not exhausted all possibilities for reasonable heuristics to

attack this production scheduling problem; other candidates undoubtedly

exist. However, it seems reasonable to expect that better heuristics will

be even more complex than those presented above. Moreover, the omission

of setup costs and their corresponding impact on available productive

capacity is a serious shortcoming of the formulation for many potential

applications. Finally, in some situations the differences in uncertainty

resolution over time among products may be substantial; if this is so, a

good heuristic should try to take this phenomenon into account. From these

considerations it seems apparent that the production scheduling problem

considered in this paper is a fruitful one for further research.
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